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Abstract. The problem of the stability of the interface between the solar wmd and the 
magnetosphere is investigated by means of hydromagnetic equations. @ explicit criterion of 
instability is written for the specid case in which both the solar plasma and the maweto- 
spheric medium are supposed to be of the same density and carry a uniform magnetic field in 
the direction of streaming. It is concluded that the magnetospheric boundary is likely to be 
unstable toward the tail and under comparatively quiet solar conditions. It is suggested that 
the characteristic effects of instability should be observed toward the night side, preferab2y- 
with space exploration vehicles. 

INTRODUCTION 
It is now generally established that a continual 

expansion of the solar corona leads to a solar 
wind which blows radially into space [Parker, 
19631. The solar plasma interacts with the geo- 
magnetic field, confining it in a region called the 
magnetosphere. The magnetosphere is asym- 
metrical in form and has the shape of a tear drop, 
with a ‘tail’ pointing away from the sun. An 
important question which has evoked some 
controversy in the literature is that of stability 
of the interface between the solar wind and the 
geomagnetic field. Dungey [I9551 and Parker 
[1958] concluded on theoretical grounds that the 
interface is unstable. D a s h  [196l], on the other 
hand, contends, on the basis of transient geo- 
magnetic activity data obtained a t  the earth’s 
surface from magnetometers, that the interface 
is stable. If the latter inference be correct, 
theories of aurora, magnetic storms, and 
Van Allen radiation which make use of the 
concept of turbulent solar injection need to be 
re-examined. 

The purpose of the present paper is to i n v d -  
gate the hydromagnetic stability of a model of 
the interface between the solar wind and the 
magnetosphere. The solar wind, on impinging 
upon the magnetospheric boundary, slips past it, 
leading to a situation in which Kelvin-Helmholtz 
instability should play an important role. We 
regard both the solar beam and the magneto- 
spheric medium as uniform infinitely extended 

1 On leave from the Department of Physics and 
Astrophysics, Delhi University, India. 

plasmas of zero dissipation having a planar inter- 
face. Further, we assume that the solar wind 
and the magnetospheric medium carry homo- 
geneous constant magnetic fields which may be 
unequal, leading to a current sheet at the 
interface. 

We shall regard the solar wind and the mag- 
netospheric medium as continuum fluids. Thia 
assumption should be reasonable, as the proton 
Larmor radius in the interplanetary magnetic 
field can be shown to be small compared with a 
typical dimemion characterizing the magneto- 
sphere [dzfosd, 19621. 

EQUATIONS OF THE PROBLEM 

Consider a system of Cartesian axes with the 
z direction vertical. Suppose that a plane surface 
of discontinuity of tangential velocity (vortex 
sheet) and of magnetic field (current sheet) exists 
at the common interface (z = 0) between two 
semi-infinitely extended homogeneous nondissi- 
pative plasmas. Let the uniform velocities and 
the uniform magnetic fields (both in the hori- 
zontal plane) be U1, Us and HI, Ht, respectively, 
for z < 0 and z > 0 regions. Let pl and p t  denote 
the uniform densities of the lower and the upper 
plasmas characterized by sound speeds C1 and 
Ct,  respectively. 

The steady state of the configuration requirea 

v p  = 0 

for either medium. Here p denotes the plasma 
pressure. Further, the equilibrium of the inter- 
face is governed by 
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To investigate the stability of the initial steady 
state, let us consider the ef€ect of a small velocity 
field disturbance u with components u, u, w in 
the z, y, z directions. 

We write: 

where Sp, Sp, and h denote perturbatiom in 
density, pressure, and magnetic field, respec- 
tively, and the s& 0 refers tQ equilibrium 
values. The perturbations are assumed to be of 
first order of smallness, so that powers higher 
than the first and their mutual products are 
neglected. 

Assuming the components of the perturbations 
to vary with z, y, z, t ,  as (some functions of z)  
exp [ikg + ik,y + nt], we can write the linearized 
hydromagnetic equations as : 

po(n + ik.Uo)u 

H"" = - ik z6p  - - (ik,h, - ik,h,) (4) 4* 

Hoz = - ik ,bp + - (ilk&, - ik,h,) (5) 4?r 

H"% Ho, - - ( D h .  - ik,h,) 4- (ik,h, - Dh,) 47r 

Let us now eliminate some of the variables 
and derive an equation for, say, the vertical 
component w of velocity perturbation vector. 
We multiply (4) and (5) by ik, and ik,, respec- 
tively, and add to obtain 

po(n + i k . U o ) ( V . ~  - Dw) + (ik,h, - ik,hz) 

where 

k2 = k: + kU2 (14) 

Eliminating Sp from (6) and (13) we get: 

- po(n + ak. Uo)( D2 - k') w 

+ po(n + ik .Uo)DV.u  

'0" + - [ik, { ik ,  Dh, - ik, Dh,}  
4T 

+ k2{ Dh, - ik,h,)] 
-- ' O x  [ik, { ik, Dh, - ik, Dh,} 

4* 

- k2( Dh, - ik.h.} J = 0 (15) 

The magnetic field terms in (15) reduce to, on 
using (9)-( 12) , 
-[(H,-k)'/k(a 4- ik-U,)](D2 - k ' ) ~  (16) 
The perturbation equation 15 is nlitten as 

[' -k (n + (k.vo)2 ik-U,Ja 1 
* ( D 2  - k ' ) ~  - D O - u  = 0 (17) 

where Vo denotes the M f v h  velocity vector 
€&/(47rp0)1'*. The expression for V-u is now 
obtained from the (7), (8), (91, (lo), and (13) as 

V - U [ C * ~ '  + (n + ik*Uo)' + (k X Vo)'] 

= (n 4- ik.Uo)2Dw - k.Vo(V0 X k)( (18) 

where { is written for (ikzo - ik,u). 

(4) and (5). We get 
Let us now evaluate f by eliminating Sp from 

{[(n + ik.UJ2 + (k*Vo)2] 

= - V - u  k.V"(k X Vo) (19) 

where D stands for d/&. 8) and (19), we obtain 
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At the common interface we have to satisfy 
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v . ~ [ ( ( ~  + ik.U0)' + c2k2) ((. + ik.uo)' 

+ (k-Vo)2) + (n 4- ik.Uo)'(k X Vo)'] 

Here ni is written for n 4- ik-U, for brevity. 

the following boundary conditions: 

= (n + ik.UO)'f(n + ik.UJ' + (k-VA'1Dw 1. me noma1 component of velocity is con- 
(20) tinuous; this condition leads to 

Substituting (20) in (17) we obtain 
a€ at' 

W l  - u1, - u,, - aY 

. = k2w[((n + ik-UO)' + (k.V,)'] 

. ((n + ik*U0)' -I- C2k2)  

4- (n -I- ik.Uo)'(k X VJ'] (21) 

as the equation determining w. 

BOUNDARY CONDITIONS AND DISPERSION 
RELATION 

For a configuration of two superposed uniform 
plasmas slipping past each other a t  the horizontal 
interface z = 0, the respective solutions, vanish- 
ing a t  z = fm, of (21) are written as: 

where 5 denotes the small displacement of the 
interface. Using (22) we get 

A ,  = A1n2/nl (25) 

2. The normal component of the magnetic 
field is continuous. We can essily verify that 
this condition is automatically satisfied as a 
consequence of condition 1. 

3. The normal stress should be continuous 
across the interface. This means that 

(26) 
(22) w1 = A ,  em" (2 0) 

w, = A ,  e-'"'* (2 : 0) When we use ( l l ) ,  (12), (13), (20), and (25) 
and simplify, (26) gives, in (27): where 

1 Substituting the expressions for ml, m, as given by (23), we finally obtain the dispersion 
relation in the following form: 

~ 

Equation 28 is the characteristic equation for 
n, the parameter determining the stability of the 
configuration. It is rather unwieldy for discussion 
in the general case, and we shall therefore discuss 

some special cases, assuming HI, Ht, U1, Ut to 
be parallel vectors. The assumption should be 
reasonable, as the solar wind drags  the solar- 
magnetic field with it during radial expansion. 
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DISCUSSION OF RESULTS 

Propagation transverse to the direction of 
streaming (k ,  = 0, k, = k) .  If the streaming 
plasmas carry the same magnetic field (Le., 
H1 = Hz) and are characterized by the same y 
(ratio of the two specific heats), the equilibrium 
of the interface (equation 2) gives 

PIC1' = PZCZ2 (29) 

where C1, Cz, and VI, V ,  are related by (29) and 
(30), respectively. If both C1 and CI tend to 
infinity, the above equation gives the dispersion 
formula for Kelvin-Helmholtz instability for 
incompressible fluids in hydromagnetics. This is 
the same equation obtained and discussed in 
earlier papers [Talwar, 1961, 19621. 

To simplify the discussion still further, let us 
take U = - U z  = +VI. Equation 32 is then 
written as: 

, 

U,P(l - 6) - 2UUP6(1 + 6) 

- U,'(l - 6 ) [ U 2  + (1 + 6)CZZ] + 4UU,S[U2(1 + 6) + CZ'(1 + s"1 

(C," + V,") 
- U 4  - 6U2Czz((1 + 6) + 26 

(C," + V,") 
-2uS(i + 6) + 4u3cZ2(1  + 6') - 

(33) . 
Also 

The dispersion equation, when the wave vector 
is nonvanishing in the direction transverse to 
streaming alone, reduces to 

P I  V12 = Pz vzz (30) 

where U p  is the phase velocity of disturbance, 
given by in /k .  

The configuration of two slipping plasmas is 
therefore stable, as can be easily verified, for 
perturbations characterized by k. = 0, k ,  = k. 
The perturbation, having a nonvanishing wave 
number k, along the direction of streaming may, 
however, bring about instability. Let us therefore 
investigate the question of the stability of 
the configuration for the other extreme case, 
k, = k,  k,  = 0. 

Propagation parallel to the direction of streaming 
(k,  = k ,  k ,  = 0). In this particular case, the 
general dispersion equation 28 reduces to 

Here 6 = pz/pl, and we have used (29) and 
(30). Equation 33 is a sixth degree equation in 
phase velocity, and to insure that the configura- 
tion of two slipping plasmas is stable also for 
perturbations along the direction of streaming, 
we require that all the roots of the above equa- 
tion should be real. In a particularly simple case, 
where we take 6 = 1 so that different layers of 
the same plasma fluid permeated with a uniform 
horizontal magnetic field have a relative tan- 
gential velocity, (33) gives: 

u,' - 2U,2(CZ + U') 

+ u4 - 2 u z c z  + c2 2c4V2 + v 2  3 = 0 [ (34) e 

where now C1 = Cz = C and VI = Vz = V.  

the stability of the configuration 
Equation 33 gives the following condition for 

Here 2U denotes the relative speed between two 
layers of the plasma characterized by the sound 
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speed C and hydromagnetic speed V. In the 
absence of a magnetic field, we get the condition 
for stability U > 4 C .  We thus conclude that, 
whereas a tangential discontinuity in a liquid 
is unstable for all nonzero speeds in the absence 
of magnetic field, it is no longer so unless the 
relative speed is smaller than a certain critical 
value in a compressible fluid. In the presence of 
magnetic fields the stability of the vortex sheet 
in compressible plasmas is improved (as also is 
the case with infinitely conducting liquids) in 
that the critical relative speed below which the 
configuration is unstable is decreased as a 
consequence of the magnetic field. Alternatively, 
we could conclude that any relative speed 

1.5 

I .4 

1.3 

u7c 

1.2 

1.1 

1.0 

between two layers of plasma can be stabilized 
by a strong enough magnetic field given by: 

Figures 1 and 2, respectively, show the depend- 
ence of critical tangential velocity U* in units 
of C as a function of V / C  and that of critical 
U v 6 n  speed against U*/Cs. 

The above results should have a useful appli- 
cation in determining whether the interface of 
the magnetosphere with the solar wind is stable 
or not. Observations [G+ingauz et al., 19600; 
Bridge et al., 19611 show that the solar Wind haa 
a speed -250-400 km/sec and density -10 

Fig. 1. A plot of the critical tangential velocity U* as measured in units of C, against V / C ,  
the ratio of the Alfvkn speed to the sound speed. 
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Fig. 2. The dependence of the critical Alfv6n speed V .  against Ua/C', the square of the ratio 
of the tangential speed to the sound speed. 

protons per cc under quiet solar conditions. 
When the sun is active, these values may mount 
to -loa km/sec with densities -300 per cc. 
The speed of the incoming solar wind is there- 
fore supersonic as it hits the magnetosphere. 
As the solar wind streams along the magneto- 
spheric boundary, the speed of solar plasma 
relative to the medium within the magnetospheric 
boundary is likely to diminish in value. This 
may be on account of internal motions within 
the magnetosphere [Gold, 19591. The internal 
convective motions (roughly along the magneto- 
spheric boundary) may arise as a result of 
viscous-like interaction between the magneto- 
sphere and the solar wind [Axford and Hines, 
19611. If this relative speed is continuously 
diminished as the solar wind sweeps around 
nrom the day side to the night side of the mag- 
fetospliere, it may very well happen that the 
relative speed at some place on the interface 
becomes less than the critical value given by (34), 
and that part of the interface thereafter becomes 

unstable. This situation leading to the instability 
of the magnetosphere-solar wind interf~ce is 
likely to arise toward the tail of the magneto- 
sphere and under quiet solar conditions when the 
speed of the incoming solar wind is relatively 
small. A verification of the above ideas is possible 
if it can be ascertained that the characteristic 
effects of instability, e.g. turbulence, high-level 
geomagnetic fluctuations, and irregularities of 
ionization density, are observed during com- 
paratively quiet solar conditions and more so 
toward the night side. 

Acknowledgments. I am grateful t o  Dr. Gilbert 
Mead for helpful suggestions. 

This work was done while I held a Senior Resi- 
dent Research Associateship of the National Acad- 
emy of Sciences. 

REFERENCES 
Axford, W. I., The interaction between the solar 

wind and the earth's magnetosphere, J .  Geophys. 
Res., 67,37914796, 1962. 

Axford, W. I., and C. 0. Hines, A unifying theory 



J . .  
. .* 

ST.IB1LITI' OF THE hflGSETOSPHERIC BOL'SDART 2712 
of high-latitude geophysical phenomena and 
geomagnetic storms, Can. J. Phys., 39, 1433- 
1464, 1961. 

Bridge, H. S., C. Dilworth, A. J. Lazarus, E. F. 
Lyon, and B. ROE.$ Direct observations of the 
interplanetary plasma, Intern. Conf. Cosmic 
Rays Earth Storm, Physical Society of Japan, 
Kyoto, Japan, 1961. 

Dessler, A. J., The stability of the interface be- 
tween the solar wind and the geomagnetic field, 
J .  Geophys. Res., 66, 3587-3590, 1961. 

Dungey, J. W., Electrodynamics of the outer at- 
mosphere, Proc. Ionosphere Cmf., pp. 229-236. 
The Physical Society of London, 1955. 

Gold, T., Motions in the magnetosphere of the 
earth, J .  Geophys. Res., 64, 1219-1224, 1959. 

Gringauz, K. I., V. V. Bezrukikh, V. D. Ozerov, 

. 

and K. E. Rybvhinskli, A study of interplanetary 
ionized gas, energetic electrons, and solar cor- 
puscular radiation using three-electrode charged 
particle traps on the second Soviet cosmic 
rocket, Dokl. Akad. Nauk SSSR, 131, 1301, 1960. 

Parker, E. N., Interaction of the solar wind with 
the geomagnetic field, Phys. Fluids, 1,  171-187, 
1958. 

Parker, E. N., Interplanetary Dynamical Proc- 
esses, Interscience Publishers, New York, 1963. 

Talwar, S. P., Helmholtz instability in hydromag- 
netics, PTOC. Natl. Ins t .  Sci., India, ZY, 263-268. 
1961. 

Talwar, S. P., Helmholtz instability in hydromag- 
netics, 2, Indian J. Phys., 36, 351-358, 1962. 

(Manuscript received February 18, 1964.) 


